306 大気圧プラズマによるN2O分解・生成特性

Characteristics of N₂O Decomposition and Formation in Atmospheric Plasma

正 神原 信志(岐阜大) 〇学 奥田 智紀(岐阜大)

正 佐々木 統一郎 (メタウォーター)

Shinji KAMBARA, Gifu University, Graduate School, 1-1 Yanagido, Gifu, Japan Tomoki OKUDA, Gifu University Toichiro SASAKI, METAWATER Co., Ltd.

Fundamental characteristics of N₂O decomposition and formation by atmospheric non-equilibrium plasma were investigated under an atmospheric temperature without catalysts. A pulsed dielectric barrier discharge (DBD) with a one-cycle sinusoidal-wave power source was employed. In N₂O-Ar system and N₂O-N₂ system, an N₂O concentration of 40 ppm was completely decomposed by DBD. In N₂O-O₂-Ar system, N₂O decomposition was inhibited by O radical generated from molecular oxygen. In N₂O-O₂-N₂ system, N₂O was produced by reaction of N₂ + O. Control of O radical generation was key technology in N₂O decomposition in N₂O-O₂-N₂ system. N₂O formation was investigated by injection of O₂/N₂ mixture into argon plasma to control O radical generation.

Key Words: Nitrous oxide, Non-equilibrium plasma, Decomposition, DBD

1. 緒言

温室効果ガスには、二酸化炭素のほかにメタン、亜酸化窒素(N₂O)、クロロフルオロカーボン類(CFCs)がある。CFCsの大気中濃度は減少しつつあるが、CH₄, N₂Oの大気中濃度は 増加しつづけている¹⁾。特に N₂O は温室効果(温暖化係数約 310)に加え、CFCsのようにオゾン層破壊を引き起こす物質 であると言われ、その排出濃度低減または分解処理法の開発 が進められている。

N₂O は石炭や廃棄物,下水汚泥の流動層燃焼や下水処理プ ロセスばっ気槽排出ガス,医療用麻酔の余剰ガス等が排出源 である。N₂O の除去技術としては,ガス温度が 1000℃以上と なるよう再燃焼する技術²⁾やゼオライト系触媒により 300℃ 付近で 70%程度分解する技術³⁾などがあり,主に燃焼プロセ スに適用されている。しかし,ばっ気槽排出ガスや麻酔余剰 ガスのように,N₂O が含まれる排ガスが大気温度付近の場合, 適当な分解処理法はない。

本研究は、大気温度付近の排ガスに含まれる N₂O の分解処 理法を開発することを目的としている。大気圧非平衡プラズ マ (Dielectric Barrier Discharge: DBD) は、大きな電子エネル ギーを容易に得ることができるため、大気温度付近の N₂O 分 解処理に適用できそうである。前報⁴⁾では、プラズマ条件(印 加電圧)、ガス組成(N₂O/O₂/N₂/Ar)、ガス流量(ガス滞留時 間)を変化させて、N₂O の分解特性を調べた。N₂O-O₂-Ar 系では、 $O_2=0\%$, 投入電力 50W の時、 N_2O は DBD により 100% 分解された。しかし、 O_2 濃度が増加すると N_2O 分解率は減 少し、特に、 $N_2O-O_2-N_2$ 系では N_2O の再生成が見られた。 本報では、 O_2 存在下でも N_2O を分解する方法を見いだす ために、 N_2O-O_2-Ar 系または $N_2O-O_2-N_2$ での N_2O およ び NOx 再生成特性を詳細に調べた。さらに大気圧プラズマの 発生法を工夫し、 N_2O および NOx 再生成の抑制を試みた。

2. 実験装置および実験方法

Fig.1 に実験装置の概要を示す。実験装置は、モデルガス
(N₂O/O₂/N₂) 供給部、DBD 反応器、高電圧パルス電源、
NOx/N₂O/O₂測定装置よりなっている。

DBD 反応器は, 直径 48 mm, 厚さ 2.0 mm, 長さ 600 mm の石英製円筒管 (Fig.2) と直径 6 mm のガス流路を内蔵した 高電圧電極 (Fig.3) で構成されている。高電圧電極と石英管 はOリングによってギャップ (2.0 mm) がつくられている。 石英管外周には,接地電極 (SUS 製,厚さ 0.2 mm,長さ 500 mm,パンチングメタル)を巻き付けた。プラズマは,ギャ ップ部に接地電極の長さで発生する。

モデルガスは、5.0 L/min 一定とし、O₂ 濃度を変化させ、石 英管 2 方向ガス供給口(Fig.2)に供給した。DBD は高周波電 源(ハイデン研究所製 PHF-2K)を用いて発生させた。

ガス組成の変化は、N₂O分析計(HORIBA, VIA510)およ

1

びNOx (NO+NO₂) /O₂分析計(SHIMAZU NOA-7000)で連 続測定した。

N₂O分解率%は次式で定義した。

$$([N_2O]_0 - [N_2O]_1) / [N_2O]_0 \times 100$$
 (1)

[N₂O]₀ はモデルガス中の N₂O 初期濃度 ppmv, dry, [N₂O]₁ は DBD 反応器出口ガス中の N₂O 濃度 ppmv, dry である。

Fig.1 Schematic diagrams of experimental apparatus.

Fig.2 Configuration of a quartz tube for a DBD reactor.

Fig.3 Configuration of a high voltage electrode.

Fig.4 に、高周波電源 (OCS) の波形を示す。印加電圧 V_{pp} は正負のピーク - ピーク間電圧で定義した。 T_0 は波形保持時 間、 T_1 はパルス間隔である。繰返し数(周波数) R_R は、 T_1 の逆数として定義した。本電源は T_0 が極めて短い時間である ことを特徴としており、Fig.4 の条件では $T_0 = 10 \mu s$ である。 V_{pp} の測定には、高電圧プローブ (Tektronix, P6015A) とデジ タルオシロスコープ (Tektronix, TDS3034B) を用いた。

Fig.4 Waveform of voltage supplied from a one-cycle sinusoidal power source (OCS). (N₂=5 ℓ /min, 25 kV, 10 kHz, $T_0 = 10 \mu$ s)

3. 実験結果および考察

3.1 N₂0-0₂-Ar系

 $N_2O-O_2-Ar 系の実験では、DBD による N_2O 分解の基礎$ $的な特性を明らかにできる。Fig.5 に印加電圧に対する <math>N_2O$ 分解率の変化を O_2 濃度をパラメータとして示す。 $O_2 = 0\%$ の 時、印加電圧 $V_{pp} = 6 \text{ kV}$ で N_2O は完全に分解した。

N₂O (N=N=O) のうち, N=O の解離エネルギーは 6.50 eV, N=N の解離エネルギーは 9.76 eV である。本電源で V_{pp} = 6.0 kV の時, プラズマ内の電子平均エネルギーは 7.0 eV と計算され る⁴⁾。すなわち, O₂ = 0%の時, V_{pp} = 6.0 kV では N=N=O の結 合のうち, N=O 結合の電子衝突解離反応(5)式が選択的に起こ ったものと考えられる。

 $N_2 O + e \rightarrow N_2 + O \tag{5}$

一方、 O_2 存在下では、 O_2 濃度が高くなるほど N_2O 分解率 は低下し、また印加電圧の増加にともなって N_2O 分解率は増 加した。 O_2 存在下では、(6)式に示す O_2 の解離反応に電子エ ネルギーが優先的に消費されるため (O_2 の解離エネルギーは 5.12 eV)、 O_2 濃度が高くなるほど N_2O 分解率が低下するもの と思われる。印加電圧を増加させると、 N_2O 分解のために電 子エネルギーが消費されるようになり、 N_2O 分解率が増加し たと考えられる。

$$O_2 + e \to O + O \tag{6}$$

尚, NOx (NO+NO₂) はこの系でのすべての実験条件で検知されなかった。これは(5)式の N₂O 分解で生成する N₂濃度が希薄なため, N₂の解離反応が起こらず,以下の NO, NO₂ 生成反応が起こらなかったものと考えられる。

$$N_2 + e \rightarrow N + N \tag{7}$$

- $N + O \rightarrow NO$ (8)
- $N + O_2 \rightarrow NO_2$ (9)

Fig.5 Effect of O_2 concentration on N_2O decomposition by DBD direct treatment in N_2O - O_2 -Ar system.

3.2 N₂0-0₂-N₂系

Fig.6 に、 $N_2O-O_2-N_2$ 系における N_2O 分解・生成挙動を示 す。この系では、プラズマ点灯電圧は Ar ベースに比較して 高くなり、14 kV であった。したがって、高い印加電圧、す なわち高い電子エネルギー中での反応となる。

 $O_2=0$ %の場合は、 $V_{pp}=18$ kV で約 100%の分解率が得られた が、 O_2 存在下では O_2 濃度が高くなるほど N_2O が生成し増加 する結果となった。 N_2O-O_2-Ar 系(Fig.5)では、酸素濃度 が高くても N_2O は分解したが、 N_2 の存在により N_2O が生成 が促進されることがわかった。すなわち、高濃度の N_2 が存在 することによって、(10)式の反応が進むものと考えられる。

 $N_2 + O \rightarrow N_2O$

(10)

これより、 $N_2O-O_2-N_2$ 系での N_2O 分解には、 O_2 解離反応 (6)式を抑制し、O ラジカル濃度を低減することが必要である。 そのためには、より低い印加電圧で $N_2O-O_2-N_2$ を処理する ことが求められる。

Fig.6 Effect of O_2 concentration on N_2O decomposition and formation by DBD direct treatment in N_2O - O_2 - N_2 system.

3.3 Arプラズマ中への02-N2の吹込み

低電圧で N₂O-O₂-N₂ガスを処理するために,アルゴンプ ラズマ中へのガス吹込みを試みた。アルゴンのプラズマ点灯 電圧は5kV程度であり,Oラジカルの発生を抑制できると考 えた。

アルゴンプラズマ中へのガス吹込みは、反応管(Fig.2)の ガス供給口からアルゴンを 2.0 SLM で供給し、Fig.3 の電極中 央部にモデルガス 3.0 SLM を供給した。アルゴンプラズマは モデルガス供給部までの間で生成し、その電子エネルギーが モデルガスに与えられる。

O ラジカルの生成抑制, すなわち N₂O の生成抑制を確認す るため, Ar プラズマ中に O₂-N₂ を吹込み, N₂O 濃度の変化を 調べた。Fig.7 は, 印加電圧に対する N₂O 濃度の変化を O₂濃 度をパラメータとして示す。Ar プラズマ中への O₂-N₂ 吹込み では, 11 kV 付近から N₂O が生成しはじめるが, O₂濃度の影 響がほとんどないこと,また Fig.6 と比較すると N₂O 濃度が 極めて低いことから, O ラジカルの生成抑制が可能であるこ とがわかった。

Fig.7 Formation of N₂O in O₂/N₂ injection into argon plasma.

4. 結論

N₂Oを大気温度・無触媒で高効率に分解する方法を確立することを目的に、大気圧非平衡プラズマによる N₂O 分解の基本特性を調べた。

 $O_2=0\%$ の N_2O-Ar 系および N_2O-N_2 系において、 N_2O は 完全に分解した。 N_2O-O_2-Ar 系の場合、酸素濃度の増加と ともに N_2O 分解率は低下したが、印加電圧を高くすることに よって N_2O 分解率を向上できる。しかし、 $N_2O-O_2-N_2$ 系で は、O ラジカルと N_2 の反応が起こり、 N_2O の生成がみられた。 O ラジカルの生成抑制のため、Arプラズマ中に O_2-N_2 を吹 き込んだところ、 N_2O の生成は大幅に抑制された。

参考文献

- 1) 気候変動監視レポート 2007, 気象庁 (2007) 64.
- 2) 三菱重工株式会社,特許公報第 2744666 号 (1998).
- 3) 三菱重工株式会社,特許公報第 2895245 号 (1999).
- 神原,阿部,古谷野,環境総合工学シンポジウム 2009 講演論文集 308, (2009)