No.7-2-4 172nm 紫外線による気相水銀の酸化処理法の開発

(岐阜大)〇伊藤裕貴,神原信志,守富 寛

Oxidation treatment of elemental mercury gas by 172 nm vacuum ultraviolet

OYuki ITO, Shinji KAMBARA, Hiroshi MORITOMI (Gifu University)

SUMMARY

Currently, the most popular method for mercury removal is powdered activated carbon injection (PAC) into flue gases. However, it is recognized that the PAC has some drawbacks such as narrow working temperature window and costly consumption. The objective of this study is to investigate characteristics of mercury oxidation by ozone generated by 172 nm VUV. Hg⁰ and Hg⁰/NO (nitric oxide) gas mixture were used as simulation gas. Above 95% Hg⁰ and NO removal was attained by ozone at low temperature ranges.

1 緒言

石炭には0.01-0.15 mg/kg程度の微量の水銀が含ま れており、微粉炭火力発電プロセス内において次の ような挙動を示す.石炭中水銀はボイラ内の燃焼場 で気相に放出され、高温場では元素水銀(Hg⁰)とし て存在する.その後、脱硝装置、熱交換器、電気集 塵機を通過する間、脱硝触媒や粒子表面あるいは気 相中でHg⁰の一部が二価水銀(Hg²⁺)に酸化されたり、 または粒子に吸着し粒子水銀(Hg²⁺)に酸化されたり、 または粒子に吸着し粒子水銀(Hg⁰)となる^{1,2)}.ここ で、Hg²⁺は主に水溶性のHgCl₂またはHgOであり、湿 式脱硫装置内で吸収液に溶解するため、排煙として 大気に放出される水銀の形態は主にHg⁰である.Hg⁰ は難水溶性でそのままでは処理が難しく、安価かつ 高効率に水銀を除去できる方法が求められている.

本研究では、 Hg^0 を強力な酸化剤であるオゾン (O_3) と反応させ、水溶性の Hg^{2+} (HgO) に転換し、湿式 脱硫装置内の吸収液および石膏中に溶解、固定する システムを確立することを目的とする.

2 実験装置および実験条件

Fig. 1 に実験装置の概要を示す.ガス供給部,光 反応器,インピンジャー,Hg⁰測定装置,NO/N₂O/O₂ 分析計で構成されている.光反応器内にモデル排ガ ス(Hg⁰/NO/O₂/N₂)を流して紫外線を照射した後, 出口ガスを水に通過させ,Hg⁰の濃度変化を連続的 に測定した.反応器内の温度は,ランプ放射熱によ り約 150°Cである.

モデル排ガス流量 7.0L/min, Hg⁰濃度 650 ppb で固定とし、O₂濃度を 2.0-20.8%, NO 濃度を 0-1000

ppm, H₂O 濃度を 0-8%に変化させ, Hg⁰除去率を 調査した.

光反応器の詳細を Fig.2 に示す.長さ 100 mm,内 径 80 mm ϕ の円筒容器内の中央に紫外線を発生する ランプ(ウシオ電機製)を配置した単純な構造であ る.ランプは3種類用意し,172,185,190 nm の波長 別の Hg^0 除去率を調査した.

Fig. 1 Schematic diagrams of experimental apparatus.

Fig.2 Detail of the photochemical reactor.

3 結果と考察

(3.1) Hg⁰酸化举動

Fig. 3 に O₂濃度に対する Hg⁰除去率の変化を紫外 線波長をパラメータとして示す.O₂濃度の増加とと もに Hg⁰除去率は 96–99 %まで増加し,波長 172 nm の時が最も除去率が高いことがわかった.

ここには示さないが、 O_2 濃度の増加によって反応 器内で生成するオゾン濃度は増加し、波長 172 nm を用いた時、最も O_3 濃度が高くなる結果を得ている. すなわち、紫外線照射で生成する O_3 濃度に比例する ように Hg^0 除去率が増加したと考えられる.

Fig. 3 Hg removal performances by Hg⁰ oxidation.

(3.2) NO 共存下の Hg⁰酸化挙動

実燃焼排ガスには NO が共存する. NO も O₃により酸化され NO₂に転換することが知られており³⁾, NO 共存下での Hg⁰酸化特性を知る必要がある.

Fig. 4 は, 172 nm の紫外線を用いた時の NO 濃度 に対する Hg^0 除去率の変化であり, O_2 濃度をパラメ ータとした図である. $O_2 = 2.0\%$ の時は NO 共存の影 響が顕著であり, NO 濃度が高くなるほど Hg^0 除去 率は減少した. しかし $O_2 = 10\%$ と生成する O_3 濃度 十分高ければ, NO 濃度に関係なく約 98%の Hg^0 除 去率が得られた.

Fig.4 Simultaneous removal of Hg and NO by ozone.

ここで NO 共存の影響を反応速度的観点から考察 する.モデル排ガス中の NO 濃度は ppm オーダーで あり, ppb オーダーの Hg⁰に比較して, NO は過剰で ある. また O₃-NO 系と O₃-Hg⁰系の反応速度定数 (cm³molecule⁻¹s⁻¹)を比較すると, O₃-NO 系の方が 大きい.

 $NO + O_3 \to NO_2 + O_2 \qquad k = 3.0 \times 10^{-11} \qquad (1)$ $Hg^0 + O_3 \to HgO + O_2 \qquad k = 7.5 \times 10^{-19} \qquad (2)$

これより, O_3 濃度が低い $O_2 = 2.0\%$ の条件では NO 濃度が高い条件において Hg^0 除去率が減少したもの と考えられる.

(3.3) H₂O 共存下の O₃ 生成挙動

実燃焼排ガスには H_2O も共存するため、 Hg^0 除去 率に及ぼす影響を知る必要がある.ここでは、まず O_2 濃度を変化させた O_2/N_2 ガス 1.0 L/min に H_2O を 加えたときの O_3 発生特性を調べた (Fig.5).

 $H_2O = 0 - 1\%$ の間に O_3 発生濃度は急減し, 1/4 程 度以下となった. $H_2O = 1\%$ 以上では, O_3 濃度の減少 はゆるやかであった.(3)式のように紫外線照射によ り発生したO ラジカルは O_2 と反応し(4)式のように O_3 を生じる.しかし H_2O が共存すると,(5)式のよ うにO ラジカルが先に H_2O に消費されるため,(4) 式による O_3 生成が減少したと考えられる.

$O_2 + hv \rightarrow O + O$		(3)
$O + O_2 + M \rightarrow O_3 + M$	$k = 2.99 \times 10^{-14}$	(4)
$O + H_2O \rightarrow 2OH$	$k = 1.84 \times 10^{-11}$	(5)

Fig.5 Effect of humidity on O₃ generation.

4 結言

光反応器により Hg⁰の酸化除去を調べた.NO が 共存しO₂=2.0-4.0%の時,除去率は低下傾向にある が,O₂=10%では除去率 98%を得た.H₂O 共存の影 響についてはO₃濃度生成量の変化を明らかにした.

参考文献

- 1. 藤原直樹, 化学工学, 70, 339, 2006.
- 2. K. KUMABE, S. Kambara, T. Yamaguchi, R. Yoshiie,
- H. Moritomi, J. Jpn. Inst. Energy, 89, 903-908, 2010.
- 3. 黒木智之, 藤島英勝, 大久保雅章, 電気学会論文
- 誌 A, 130(10), 885-891, 2010.