S118

ガス状水銀捕捉剤の開発とその捕捉メカニズム

(岐阜大工)○(学)小嶋 俊之・(正)神原 信志・(正)守富 寛*
(出光興産)藤原尚樹・神柱大助

1. 緒言

石炭燃焼炉や廃棄物焼却炉からの排ガス中には有害微 量金属が含まれ,環境汚染や健康影響が懸念されている。 これらの有害微量金属は,集塵装置や湿式脱硫設備であ る程度除去されるが,揮発性の高い元素は除去されず, サブミクロン粒子や気体として大気中へ放出されるため, これらの挙動解明と除去技術の開発が求められている。 本研究では,石炭燃焼プロセスから排出されるフライア ッシュ(FA)中の水銀捕捉挙動に違いに着目し、それら に及ぼす物理化学的影響を検討した。

2. 実験装置および方法

2.1 水銀吸着試験装置

Fig.1 に水銀の吸着試験装置を示す。装置は、加熱炉 と連続水銀分析装置から成っており、捕捉剤を透過した 0 価水銀及び2 価水銀化合物の濃度の時間的変化を測定 することが可能である。捕捉剤を加熱炉内の石英管中に セットし、テドラーバッグにシリンジでガス状0 価水銀 を入れ、N2ベースで全流量0.5L/min とし、塩化水素濃 度が 300ppm、2000ppm となるように流量を調節した 模擬排ガス条件で実験を行い、捕捉剤の水銀の捕捉効果 を検討した。

2.2 炭種による水銀捕捉量の特性化

本研究では灰中未燃炭素の物理化学的な違いが水銀捕 捉挙動と関連するものと推定し、比表面積測定および顕 微レーザーラマン分光分析装置を用いて、炭素構造のキ ャラクタリゼーションを行った。本報では、まず化学的 構造の影響について述べる。レーザーラマン分光分析で は、微粉炭燃焼プラントから採取した11種のFAを試料 とした。ペレット化した試料表面の任意の100ヶの未燃 分について分析した。

3. 結果と考察

3.1 フライアッシュによる水銀捕捉挙動

Fig.2 に褐炭活性炭,流動層灰および微粉炭燃焼灰に よる水銀捕捉挙動を示す。これら3種類の試料の水銀捕 捉挙動には違いが見られ,それは灰中未燃炭素の物理的 構造と化学的構造に影響されていると考えられる。 Fig.3 には、ラマン分光法によって得られた灰中未燃 分のスペストルデータの一例を示すが、未燃粒子や炭種 により 1600cm⁻¹付近のグラファイトピーク(G-band)

および1380cm⁻¹付近の欠陥炭素構造ピーク(D-band) の強度に違いが見られた。

Fig.2 各試料の0価水銀捕捉挙動

Fig.3 未燃分ラマン吸収スペクトル

未燃炭素の化学的構造は、D-band と V-band (1480cm⁻¹付近)の比 D/V で特性化した。D/V が大き いほど欠陥格子を持つ炭素が増加し水銀捕捉量は増加す る傾向が得られた。また、D/V の値には分布があり、炭 種によってその分布は大きく異なる。Fig.4 は、S 炭と N 炭の FA の D/V の確率分布を示したものであり、S 炭の 未燃炭素の構造はより不均質である。未燃炭素への水銀 捕捉挙動は、物理構造の影響に加え、炭素構造の違いと その分布を考慮することで定量的に説明できるものと推 定される。

Tel&Fax :058-293-3341 E-mail: kambara@cc.gifu-u.ac.jp