305 励起アンモニア低温無触媒脱硝法の開発

Low temperature SNCR by activated ammonia

正 神原 信志(岐阜大)

学 早川 幸男(岐阜大)

○学 辻 陽平 (岐阜大)

外 三浦 友規 (澤藤電機)

外 増井 芽 (アクトリー)

Shinji KAMBARA, Gifu University, 1-1 Yanagido, Gifu.

Yukio HAYAKAWA, Gifu University, 1-1 Yanagido, Gifu.

Yohei TSUJI, Gifu University, 1-1 Yanagido, Gifu.

Tomonori MIURA, Sawafuji Electric Co., Ltd., 3 Nittahayakawacho, Ota, Gunma.

Megumi MASUI, Actree Co., Ltd., 375 Misumimachi, Hakusan, Ishikawa

Selective non-catalytic reduction of NO_x by activated ammonia injection has been developed to broaden and lower the narrow temperature window for de- NO_x . A temperature window enlargement of 150 °C was achieved at the lower boundary of the window using activated ammonia injection. In this study, the reaction mechanism for de- NO_x was considered by the measurements of the chemical composition of activated ammonia, the verification de- NO_x experiments, and the detailed kinetics simulation. A major chemical species of activated ammonia is molecular hydrogen. The effect of molecular hydrogen on de- NO_x reactions was investigated by using an NH_3/H_2 gas mixture in the temperature range of 500 °C.—850 °C. This clearly indicated that hydrogen played a key role in the expansion of the temperature window. The reaction mechanism of de- NO_x was described using a detailed elemental kinetic model. This model suggested that molecular hydrogen produced key radical species for de- NO_x reactions, such as HNO, NNH, and NH above 600 °C, which were promoted NO_x reduction at lower temperatures.

Key Words: DeNOx, SNCR, Hydrogen

1. 緒言

最近,廃棄物焼却炉などの中小規模の燃焼設備でも厳しい NO_x 濃度規制が地域協定等で実施されるようになり,脱硝設備の設置が必要となってきている。中小規模の燃焼炉では設置面積や設備コストの面で,無触媒脱硝法(SNCR)が望まれている。しかし,SNCR における反応温度範囲は $850-1175^{\circ}$ C(Temperature window という)の高温域にあり⁽¹⁾,中小規模の燃焼炉や焼却炉では高温域での反応時間を十分確保できず脱硝率が低下するという問題がある。また,焼却炉では炉出口に SNCR 装置を設置するのが望ましいが,炉出口温度は 750° C 程度であり,SNCR を適用することができない。これらの課題の解決には,Temperature window を低温側に拡大する方策が必要である。

著者らは、 NH_3 を大気圧プラズマ(誘電体バリア放電: DB D)で励起し、それを排ガスに吹き込むと、Temperature wind ow が低温側に 150 °C 拡大することを見いだした $^{(2)\cdot(3)}$ 。 すなわち、DBD で改質したアンモニアを用いれば(改質アンモニア脱硝法という)、中小規模の燃焼炉や焼却炉用の SNCR を確立できる可能性がある。

これまでの研究より、脱硝を促進させる改質アンモニア化学種は H_2 であると推測された $^{(4)}$ 。本研究では H_2 の脱硝効果を明らかにし、 H_2 添加による脱硝の最適条件を確認するため、 H_2 を添加した時の脱硝率の変化について調査した。

2. 実験装置および実験方法

装置は、モデルガス供給系、脱硝ガス供給系、予熱部、ガス混合室、反応部、ゴールドファーネス、NOx、 N_2O 、 O_2 分析装置よりなっている(Fig.1)。ゴールドファーネスは、予熱部と反応をそれぞれ独立に温度制御できる。

ガスブレンダー付きマスフローコントローラーで酸素濃度(2.1%, 8.2%)と NO 濃度(500ppm),総流量(3.0 L/min 固定)を調整したガスを予熱部側から供給した。次に脱硝ガスである H_2 , NH_3 をガス混合部においてインジェクションし,モデルガスと混合し,反応部において Thermal 反応を起こした。反応部の温度は 600 $^{\circ}$ から 750 $^{\circ}$ $^{\circ}$ Cまで加熱し温度を定常にした。系内の圧力は調圧装置で大気圧付近(103.1 ± 0.1 kPa)で制御した。

水素添加によって処理したガスは、分析計に悪影響を及ぼさないようにガス中未反応アンモニアを吸着剤で除去した後、ポンプ付ガスサンプラーで NOx/O₂計、N₂O 計に導入し、連続分析した。脱硝率は、反応部温度 500 ℃における NO の濃度([NO]_{in})と各実験条件における出口ガス中の NO の濃度([NO]_{out})を NOx 計で測定することによって求めた(Eq. 1)。

NO removal = $([NO]_{in} - NO]_{out}) / [NO]_{in}) \times 100$ Eq. 1

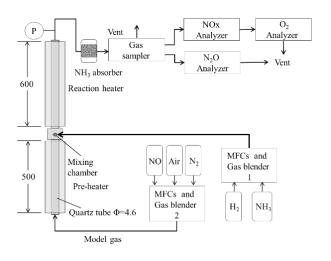


Fig. 1 A schematic diagram of experimental apparatus.

3. 実験結果および考察

3.1 模擬改質アンモニア脱硝

Fig. 2 に F_0 = 3.0 L/min, NO conc. = 500 ppm, O_2 conc. = 2.1 %, M_R = 1.5 の時の H_2 添加による脱硝特性について反応部温度 $(600-750^\circ\text{C})$ をパラメータとして示したものである. 温度 500°C では脱硝は起こらず, 600°C 以上になると脱硝反応が確認できる.

 H_2/NH_3 モル比0において $\mathbb C$ の温度域でも脱硝反応は確認できなかったのに対し、改質によって H_2 が生成されると $600\mathbb C$ 以上のどの温度域においても脱硝率が上昇した。このことより、 NH_3 改質で生成される化学種のうち、脱硝を促しているのは H_2 だということがわかった。脱硝率は温度ごとにある H_2 がということがわかった。脱硝率は温度ごとにある H_2 がいるでは添加 H_2 がの等量比 2.9 で 39.2 %であり、温度 $650\mathbb C$ では添加 H_2 NO 等量比 2.9 で 39.2 %であり、温度 $750\mathbb C$ では添加 10 の 等量比 10 の 10

Fig. 3 は今回の模擬改質アンモニアインジェクション実験 におけるそれぞれの温度域での最大脱硝率と従来の Thermal 脱硝法での脱硝率を比較の結果を示している。20%の脱硝率を得るために従来の Theramal 脱硝法では約750%の温度が必要だったのに対し,模擬改質アンモニア脱硝法では600%において脱硝率20%を得ることが出来た。この結果より H_2 と NH_3 の混合条件により Thermal 脱硝の反応温度域は約150%低温側に広がるということがわかった。

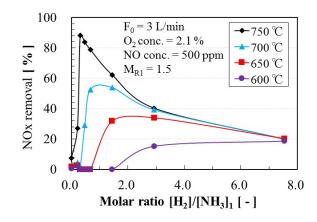


Fig.2 Characteristics of NO removal by H₂ injection.

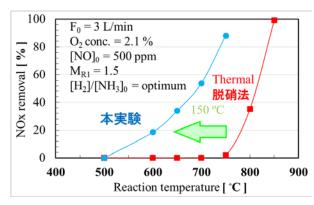


Fig.3 Comparison of NO removal characteristics between thermal de-NOx and H_2 injection.

3.2 水素添加脱硝法

3.1 の結果より、従来の Theramal 脱硝法の後に H_2 を添加し、 未反応の NH_3 と H_2 の混合条件とすることで排ガス温度 700 $^{\circ}$ C以下の本来 Thermal 脱硝反応が起きない温度域でも低 温脱硝が行えるのではないかと予想した。 予熱部において Thermal 脱硝を起こした後、混合部において H_2 を添加するこ とで反応部において水素添加脱硝を行った。

Fig.4 は F_0 = 3.0 L/min, NO conc. = 500 ppm, O_2 conc. = 8.2 %, M_R = 1.0 の時の H_2 添加による脱硝特性について水素添加脱硝部温度をパラメータとして示したものである。 すべての反応温度においての水素を添加することにより脱硝反応が促進されることが確認できた。この時,脱硝率は H_2 添加量を増や

すことで上昇し、最大となった後は一定であった。このことより、 NH_3 の量が一定であれば最適 H_2 量以上の H_2 を加えることで、高脱硝率を得られると考えられる。また、最適 H_2 添加量は $T_2=650$ $^{\circ}$ Cで 250 ppm, $T_2=750$ $^{\circ}$ Cで 90 ppm となり、反応温度を上昇させることにより少なくなることがわかった。このことから温度ごとの最適 H_2 条件を探すこと効率よく脱硝反応を促進できると考える。

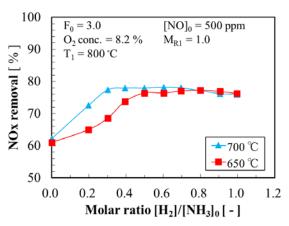


Fig.4 Characteristics of NO removal by hydrogen addition.

3.3 水素添加脱硝法のメカニズム考察

Fig. 5 は F_0 = 3.0 L/min, T_1 = 800°C, T_2 = 700°C, NO conc. = 500 ppm, O_2 conc. = 8.2 %, M_R = 1.0 の時の H_2 /N H_3 当量比に対する脱硝率の変化を今回の水素添加脱硝実験結果とシミュレーション結果について比較したものである。実験結果とCHEMKIN-PRO を用いて行ったシミュレーションの脱硝率の変化は概略の一致を示した。このことから,本シミュレーションから以下の反応メカニズムで水素添加脱硝法は進行していると考察できる。

まず、開始物質である H_2 と NH_3 はNO, OHと反応しNNH, HNO, NH_3 などの物質となる。

$H_2 + NO \rightarrow HNO + H$	Eq. 2
$H_2 + 4NO \rightarrow 2NNH + 2O_2$	Eq. 3
$NH_3 + OH \rightarrow NH_2 + H_2O$	Eq. 4
$NNH + NO \rightarrow N_2 + HNO$	Eq. 5

 HNO,NH_2 はそれぞれ NH ラジカル, OH ラジカルといった 中間体になる(Eq. 6, 7)。

$$HNO + H \rightarrow NH + OH$$
 Eq. 6
 $NH2 + NO \rightarrow NNH + OH$ Eq. 7

そして中間体である NH ラジカル, OH ラジカルは最終物質である無害な H_2O , N_2 となる。

$$NH + NO \rightarrow N_2 + OH$$
 Eq. 8
 $OH + H \rightarrow H_2O$ Eq. 9

このように水素添加脱硝実験では H_2 の添加によってNHラジカル、OH ラジカルが生成され、NO は無害な H_2O 、 N_2 に分解されるというメカニズムが予測できた。

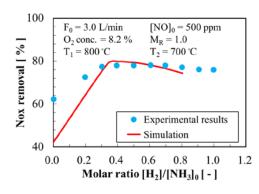


Fig.5 Comparison of NO removal characteristics between experimental result and simulation.

4 結言

改質により H_2 が生成されることによって脱硝率の上昇が確認できたことにより、改質 NH_3 化学種のうち脱硝に影響を与えているのは H_2 だということがわかった。 NH_3 改質で生成された H_2 は反応温度域を 150 \mathbb{C} ほど低温側にシフトさせることが明らかとなった。 H_2 NH_3 当量比はある一点で最大値となりその後減少した。 H_2 の添加による Thermal 脱硝反応の促進を確認できた. すなわち,既存の Thermal 脱硝後に H_2 \mathbb{N} \mathbb{N}

文 献

- (1) Lyon R.K., US. Patent 3900554, 1975.
- (2) Kambara, S., Kumano, Y., Moritomi, H., Nagao, I., Yamamoto, K., Yukimura, K., Maruyama, T., Japan Journal Applied Physics, 44, (2005) 1427.
- Kambara, S., Kumano, Y., Yukimura, K., IEEE Transaction on Dielectrics and Electrical Insulation, 16, (2009) 778.
- (4) 神原信志,早川幸男,増井 芽,三浦友規,隈部和弘,守富 寛,日本機械学会論文集 B 編,78(789),(2012),1042.