Reduction of CO₂ Emission in LRC Power Plant by LRC Drying and Simulation by Coal Quality Evaluation System (C-Quens)

Shinji Kambara

Gifu University, Graduate School of Engineering Environmental & Renewable Energy Systems

Background and Objective

- Low rank coal (LRC) contains significant amounts of moisture, which decreases the overall plant thermal efficiency.
- As a result, the specific CO₂ emission is increased. To reduce the CO₂ emission, an improvement of the thermal efficiency is desired.
- External drying technologies are one of the solution for CO₂ mitigation of LRC power plants.
- Computer simulation studies were carried out to evaluate CO₂ emission of a 315 MW LRC power plant with and without an external drying process.

Simulation Conditions

5 case studies were carried out.

Baseline (without STD), 1 STD at full load, 2 STD at full load, 1 STD at 75% load, 1STD at 50% load.

	Unit	Baseline	1 unit STD	2 unit STD	75% load 1 STD	50% load 1 STD
Net power	MW	302.1	302.1	302.1	214.2	141.7
Total moist.	%	35.0	25.0	11.4	25.0	25.0
Steam temp.	C	-	342	342	340	322
Steam flow	t/h	-	30.8	60.4	22.0	15.5
Steam press.	MPa	-	0.862	0.862	0.619	0.438
Steam temp. at STD exit	C	_	172.2	172.2	158.8	145.7

Table 2 Simulation conditions of a 315 MW power plant with and without STD.

Conclusions

The thermal efficiency and CO_2 emission of a 315 MW LRC power plant with and without STD(s) were estimated by C-Quens. The results are concluded as follows:

- By one STD addition, total moisture in coal was dried to 25% from 35%.
- Boiler efficiency was increased by 2.0% points by the improvement of boiler efficiency.
- Net thermal efficiency was increased by 0.8% points by the decrease in power consumption of auxiliaries.
- 54,000 ton-CO₂/year was mitigated at a full load condition.