4th Japan-Korea Joint Symposium on Plasma and Electrostatics Technologies for Environmental Application Dec. 10-11.2015, Kyoto, Japan

Hydrogen production from ammonia by DBD pulsed plasma with hydrogen permeable membrane

Prof. Shinji Kambara

Gifu University, JAPAN Graduate School of Engineering, Energy and Renewable Energy System Division

Background

To promote hydrogen economy, ammonia (NH₃) is expected as hydrogen carrier and hydrogen storage materials.

Fig. 1 Energy density (kWh/kg vs. kWh/m³) of various materials.

Typical Energy Carrier & Storage System

Fig.2 Typical hydrogen energy carrier and storage system incorporating renewable energy systems

This system has:

- 1) hydrogen production by electrolysis of alkali water,
- 2) ammonia production by synthesis of hydrogen and nitrogen,
- 3) hydrogen production by ammonia decomposition.

Proposed Energy Carrier & Storage System

Fig.3 Proposed energy carrier and storage system.

This system has:

- 1) nitric acid production from NO_x by photochemical reactions,
- 2) ammonia production from HNO_3 by reduction,
- 3) hydrogen production by ammonia decomposition.

Fig. 4 Key technology for hydrogen carrier and storage system.

Technical issues

- 1. High energy efficiency for H_2 production.
- 2. Production of high purity H_2 of 99.9999% for fuel cells.

Plasma techniques may be one of the solution for the issues.

1. Hydrogen production from ammonia by a DBD pulsed plasma.

2. Reaction mechanism of hydrogen production in the plasma.

3. High purity hydrogen production by the DBD pulsed plasma with hydrogen separation membrane.

Experimental Setup (No membrane)

<u>Gas analyzers</u>
1) For N₂ and H₂ measurement Micro GC (Agilent 300A): -Porapack Q capillary column
t -TCD
2) For NH₃ measurement photo acoustic spectroscopy
(Gasera Inc., F10): -Atmospheric gas -Continuous measurement

Fig.5 Experimental setup for hydrogen production tests.

Ammonia plasma

Fig.6 The state of plasma at $V_{pp} = 15 \text{ kV} (0.5\% \text{ NH}_3)$.

Waveforms of the power source

Fig. 7 Waveforms of voltage of the power source.

 T_0 : Duration time of one cycle = 10 µs R_R : Repetition rate = $1/T_0 = 10$ kHz V_{pp} : Applied voltage

Experimental conditions

Table 1 Experimental conditions for H₂ production tests for 0.5% NH₃/Ar gas

	Unit	
Repetition rate, $R_{\rm R}$	[kHz]	10
Applied voltage, V_{PP}	[kV]	3.5–15
NH ₃ conc. (Ar base)	[%]	0.5
Flow rate	[L/min]	0.2–2.0

Overall reactions: $NH_3 + e \rightarrow 0.5 N_2 + 1.5 H_2$

Characteristics of H₂ production

1) H₂ conversion increased with an increase of V_{pp} , and decreased with an increase of NH₃ flow rate.

2) About 100% H₂ conversion was attained at $V_{pp} = 15$ kV and F = 0.2L/min.

Fig.8 Effects of applied voltage and flow rates of 0.5% NH₃ on H₂ conversion.

Detailed chemical compositions

1) Detected chemical species were H₂, N₂, and unreacted NH₃. H₂ fraction increased with an increase of V_{pp} .

2) At 15 kV, unreacted NH_3 conc. was about 300 ppm. (H_2 conversion: 99.97%)

This is "No Good" result. The limitation of NH_3 conc. for FC is below 0.1 ppm !

Fig.9 Chemical composition at various applied voltages (NH $_3$ = 0.5, the flow rate = 0.2 L/min).

Energy efficiency

Maximum EE = 0.016 mol-H₂/kWh (0.13%). But, this is not enough for practical use.

The EE rapidly decreased after the peak value, because NH_3 may be produced by reverse reactions.

Fig.10 Variation in energy efficiency of H₂ production for various V_{pp} and *F*.

Mechanisms of H₂ production

NH₃ decomposition

 $NH_3 + e \rightarrow N + H + H_2 + e$ (2): Low V_{pp}

 $\frac{N_2 \text{ production}}{N + N} \implies N_2$

 N_2 and H_2 decomposition $N + N \leftarrow N_2$ $H + H \leftarrow H_2$

*NH*₃ recombination

 $N + 3H \rightarrow NH_3$

(3): Low V_{pp} (4): High V_{pp} (5): High V_{pp}

(6): High V_{pp}

To improve the energy efficiency, 1) High concentration of NH₃ must be used at a low V_{pp} . 2) Generated H radical must be removed from the plasma.

Elemental reaction simulation

<u>CHEMKIN-PRO</u> was used for the simulation

Below models and experimental conditions have to input on CHEMKIN-PRO.

(1) Plasma reactor model
(2) Experimental conditions
(3) Elementary reaction models
Gas-phase reaction model
Surface reaction model

+Reactor volume

+Discharge power

+Inlet gas compositions and the flow rates

Elementary reaction model

Electron impact model, Gas-phase reaction model, Surface reaction model were considered as reaction mechanism of NH_3 decomposition in the DBD pulsed plasma.

Table 3	Electron impact model and gas-phase reaction model
---------	--

R 1	NH ₃ +H=NH ₂ +H ₂ ¹⁾	R6	$NH_3+e^-=NH+2H+e^{-2}$	
R2	$NH_3+M=NH_2+H+M^{1)}$	R7	$e^{-}+H_{2}=2H+e^{-2}$	Ref.
R3	$NH+H=N+H_2^{1}$	R 8	$NH_3 + e^- = NH_3^+ + 2e^{-2}$	 Suitable model was applied. Matzing.H: Adv. Chem. Phys. (1991)
R4	$NH_2 + NH = N_2H_2 + H^{1)}$	R9	$NH_3 + e^{-} = NH_3^{-2}$	
R5	$N_2H_2+H=NNH+H_2^{1)}$	R10	$NH_3 + e^{-2} = NH + H_2 + e^{-2}$	

• Bai's Surface reaction model was used.

- 1. Reactions of positive ions and electrons recombination on the surface.
- 2. Reactions by adsorption on the surface.

Ref. Bo Bai. An Experimental Study and Modeling of Transformer-Coupled Toroidal Plasma processing of Materials. (2006)

Applied gas phase reaction model

Which are gas-phase reaction models suitable for the plasma reactions?

Detailed gas phase reaction model

Reaction mechanism and rate of	constants expressed as $k = AT^{\beta}$	$\int \exp(-E_a/RT)$ with un	its of cal, cm^3 , mol, and s
	1	1 4/	

No	Reaction	Α	β	E_a	Source
25.	$NH_3 + M \rightleftharpoons NH_2 + H + M$	2.2E16	0.00	93470	[31]
26.	$NH_3 + H \Longrightarrow NH_2 + H_2$	6.4E05	2.39	10171	[31]
30.	$NH_2 + H \rightleftharpoons NH + H_2$	7.2E05	2.32	799	[62]
39.	$NH_2 + NH_2 \rightleftharpoons N_2H_4$	5.6E48	-11.30	11882	[26], 1 atm
40.	$NH_2 + NH_2 \rightleftharpoons N_2H_3 + H$	1.2E12	-0.03	10084	[26], 1 atm
41.	$NH_2 + NH_2 \rightleftharpoons H_2NN + H_2$	1.2E21	-3.08	3680	[26], 1 atm
42.	$NH_2 + NH_2 \rightleftharpoons NH_3 + NH$	5.0E13	0.00	10000	[31]
43.	$NH_2 + NH \rightleftharpoons N_2H_2 + H$	5.0E13	0.00	0	[31]
44.	$NH_2 + NH \rightleftharpoons NH_3 + N$	9.2E05	1.94	2444	[26]
45.	$NH_2 + N \rightleftharpoons N_2 + 2H$	7.0E13	0.00	0	[31]
94.	$H_2NN \rightleftharpoons NNH + H$	3.4E26	-4.83	46228	[26], 1 atm
95.	$H_2NN + H \rightleftharpoons NNH + H_2$	4.8E08	1.50	-894	[26]
96.	$H_2NN + H \rightleftharpoons N_2H_2 + H$	7.0E13	0.00	0	[26]
105.	$NNH \rightleftharpoons N_2 + H$	6.5E07	0.00	0	[30]
106.	$NNH + H \rightleftharpoons N_2 + H_2$	1.0E14	0.00	0	[31]

 \bullet H₂NN and NNH chemistry is including in Skreberg's model.

GIFU UNIVERSITY

Simulation results

Effect of reverse reactions

Fig.14 Variation in NH₃ conc. in plasma

Reverse reaction is occurred in plasma.

H₂ separation membrane

To prevent reverse reactions, hydrogen separation membrane was applied, which is used as a high voltage electrode.

Fig.15 Plasma membrane reactor (PMR). A hydrogen separation membrane was used as the HV electrode.

H₂ separation mechanism

Fig.16 H_2 separation mechanisms in plasma with the hydrogen separation membrane (HSM).

Advantages of the developed plasma device:
1) NH₃ at low temperatures can be used.
2) Produced hydrogen can be used to fuel cells.

Experimental apparatus : Plasma membrane reactor (PMR)

Fig.17 Experimental setup using plasma membrane reactor (PMR).

Experimental equipment: electrode mounted a hydrogen separation membrane

(b)

Membrane is welded

inside high voltage electrode

Table 1 Specification of hydrogen separation membrane.

	Unit	
Composition ratio	[-]	Pd-40wt%Cu
Thickness	[µm]	20
Limit pressure difference	[kPa]	100

Fig. 18 Plasma membrane reactor. (a) plasma reactor, (b) high voltage electrode with hydrogen separation membrane, (c) condition of plasma firing.

H₂ separation tests by pure H₂

Table Plasma conditions for H₂ separation characteristics tests

Repetition rate, $R_{\rm R}$	[kHz]	10
Applied voltage, V_{PP}	[kV]	0.0—20.0
Feed pressure, PG_1	[kPa(G)]	0—60
Induced pressure, PG_2	[kPa(G)]	-90—0
H_2 conc. (Ar base)	[%]	10—100
Flow rate	[L/min]	0.5—2.0

 H_2 separation characteristics of PMR Maximum flow rate of the hydrogen separation membrane for the PMR is 48 L/h at ΔP of 70 kPa.

Fig.19 Hydrogen separation characteristics of PMR for pure hydrogen supply

Experimental condition : Hydrogen production experiments with PMR

Hydrogen production experiments were conducted in the PMR using the 100% ammonia gas according to below experimental conditions.

Table 3 Experimental conditions of hydrogen production with PMR.

Repetition rate, $R_{\rm R}$	[kHz]	10
Applied voltage, $V_{\rm PP}$	[kV]	0.0 - 20.0
Pressure of supplied side, P_{G1}	[kPa(G)]	0
Pressure of permeable side, P_{G2}	[kPa(G)]	-90
NH ₃ conc.	[%]	100
Flow rate	[L/min]	0.5 — 2.0

Highlights Data:H₂ production by PMR

Fig.20 Hydrogen production performance of the PMR and PR using 100% ammonia gas.

Development of energy carrier and storage system

Conclusions

1. Hydrogen production from ammonia by a DBD pulsed plasma.

The hydrogen conversion was 99.97% at a flow rate of 0.2 L/min and V_{pp} of 15 kV. However, it was low energy efficiency and no good hydrogen purity for FC.

2. Reaction mechanism of hydrogen production in the Plasma production was occurred by reverse reaction at high applied voltage. $NH + H_2 + e \rightarrow NH_3 + e$ Reaction mechanism was elucidated by elemental reaction simulation.

3. High purity hydrogen production by the plasma membrane The energy efficiency was 4.42 mol-H₂/kWh, which is corresponding to 34.8% energy efficiency based on heat value. Hydrogen purity was good for fuel cells. However, more improvement of energy efficiency is desired for hydrogen carrier and storage system.

Conversion of nitric oxide to HNO₃ at room temperature by VUV radiation

Shinji Kambara

Gifu University, JAPAN Graduate School of Engineering, Energy and Renewable Energy Systems Division

Proposed Energy Storage & Carrier System

Fig.3 Proposed energy storage and carrier system.

This system has:

- 1) nitric acid production from NO_x by photochemical reactions,
- 2) ammonia production from HNO_3 by reduction,
- 3) hydrogen production by ammonia decomposition.

Technical advantages are:

High efficiency production for HNO_3 , NH_3 , and H_2 .

These reactions are low temperature reactions.

Current Research Topic

Nitric acid production from NO_x by photochemical reactions at room temperature and atmospheric pressure.

Fig.4 Current research topic.

Advantages of HNO₃ production from NO_x are:

Existing selective catalytic reduction (SCR) is unnecessary.
 Costly catalyst and deNOx agent (NH₃) for SCR can cut down.
 HNO₃ easily convert to NH₃ by reduction at low temperature.
 HNO₃ is available for hydrogen storage and carrier.

Experimental Apparatus

Fig.5 Experimental setup for HNO₃ production using vacuum ultra violet.

Details of Photochemical Reactor

Fig.6 Details of the photochemical reactor

The photochemical reactor was a coaxial configuration with the excimer lamp.
 The wavelength of excimer lamp is 172 nm.

Experimental Conditions

Table 1 Experimental conditions

Gas composition	$NO/O_2/H_2O/N_2$ gas mixture
Gas flow rate	1.0–5.0 L/min
NO concentration	1500 ppmv
O_2 concentration	0 or 8.3 %
H ₂ O partial pressure	0–9.5 kPa
Gap length of the reactor	20 or 10 mm
Gas temperature	20°C (room temp.)

Therefore, in this study, four kind of gas composition was examined to investigate reaction paths.

1) NO/O₂/H₂O/N₂
 2) NO/O₂/N₂
 3) NO/H₂O/N₂
 4) NO/N₂

Effect of flow rate on HNO₃ production

Some reactions are concerned: As photochemical decomposition, $H_2O + hv \rightarrow OH + O$ (1) $O_2 + hv \rightarrow O + O$ (2) $NO + hv \rightarrow N + O$ (3)*hv* is photon energy of VUV. As gas phase reactions, $NO + OH + O \rightarrow HNO_3$ (4) $NO + O \rightarrow NO_2$ (5) $NO_2 + OH \rightarrow HNO_3$ (6)These reaction rates depend on

the gas residence time. Therefore, HNO_3 production was affected by the flow rates.

Fig.7 Variation in HNO_3 production with flow rates. (NO/O₂/H₂O/N₂ system)

The NO conversion to HNO_3 was attained 97% at the flow rate of 1.0 L/min. HNO_3 production was decreased with an increase in the flow rate.

Effect of gas compositions (1)

Fig.8 Effect of gas compositions on HNO_3 production as a function of partial pressure of H_2O . White key is 0% O_2 , and black key is 8.3% O_2 . This figure includes results of four gas system.

The highest HNO₃ production rate was obtained at NO/O₂/H₂O/N₂ system. - Dominant reactions are: HNO₃ production including H₂O + $hv \rightarrow$ OH + O O₂ + $hv \rightarrow$ O + O NO + OH + O \rightarrow HNO₃

- Secondary reactions are: NO reduction $NO + hv \rightarrow N + O$ $N + N \rightarrow N_2$ $O + O \rightarrow O_2$ in NO/N₂ system HNO₃ production $H_2O + hv \rightarrow OH + O$ $NO + OH + O \rightarrow HNO_3$ in NO/H₂O/N₂ system

Effect of gas compositions (2)

Therefore, in $NO/O_2/N_2$ system, different reactions were concerned:

NO₂ generation O₂ + $hv \rightarrow O + O$ O₂ + $O \rightarrow O_3$ NO + O₃ $\rightarrow NO_2 + O_2$

Fig.9 Behavior of ozone generation as a function of partial pressure of H₂O.
 Parameter is O₂ concentrations.
 Ozone was generated in NO/O₂/N₂ and NO/O₂/H₂O/N₂ system.

Ozone concentration was decreased with an increase in H_2O concentrations.

Key Reactions of HNO₃ production

Fig.10 Estimated reaction paths in photochemical reactions for $NO/O_2/H_2O/N_2$ system.

There are three key reactions:

1) O and OH radical generation by photochemical decomposition

2) Radical reactions with NO

3) NO_2 generation by O_3 and NO reaction.

Dominant reactions of HNO_3 production is radical reactions with NO, therefore, HNO_3 production was occurred at low temperature, because activation energy = 0 in radical reactions.