TFEC9-1498

Hydrogen Production Characteristics from Ammonia by Plasma Membrane Reactor

Yukio. Hayakawa^{1*}, Shinji Kambara¹, Tomonori Miura²

¹ Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
²SAWAFUJI ELECTRIC CO., LTD., 3 Nittahayakawa-cho, Ota, Gunma, 370-0344, Japan

ABSTRACT

An innovative plasma membrane reactor (PMR) has been developed to produce H_2 from NH_3 . The PMR is consist of atmospheric pressure plasma and the H_2 separation membrane, which can produce high-purity H_2 for fuel cells from NH_3 . First, fundamental characteristics of H_2 separation of the PMR were examined by supplying H_2 gas. It verified that the PMR has excellent performance for H_2 separation at atmospheric pressure. Second, NH_3 decomposition and H_2 production characteristics of the PMR were investigated by supplying 100% NH_3 gas. The maximum H_2 conversion was 24%, whereas the plasma reactor without H_2 separation membrane was hydrogen conversion of 13%. Purity of H_2 was about 100%, which can apply fuel cells. Stable H_2 production rate of 20 mL / min was observed.

KEYWORDS: Ammonia, Hydrogen, Atmospheric plasma, Hydrogen separation membrane, Dielectric barrier discharge

1. INTRODUCTION

The bottleneck of construction of hydrogen energy society is energy loss in the transportation and storage of H_2 [1]. In order to reduce energy loss, a new energy system using hydrogen carriers has been proposed [2]. Hydrogen carrier is available for transportation and storage of H_2 . Among hydrogen carrier, NH_3 is promising, and research on H_2 production from NH_3 has been done in the world [3]. NH_3 has four advantages as an hydrogen carrier. (1) Liquefaction is easy. (2) The method of transportation and storage is established. (3) Carbon dioxide does not produce when NH_3 is converted to H_2 at end user side. (4) High energy density on a basis of weight and volume such as fossil fuels. In the hydrogen energy system using NH_3 , a device for producing H_2 from NH_3 is required.

 H_2 production from NH₃ by high electron energy of atmospheric pressure plasma is extremely promising. This is because that the electric load to the plasma reactors can be quickly controlled by adjusting the output voltage or duty cycle, which can respond well to variations in gas volume. Furthermore, ammonia is expected to be completely decomposed by sufficient electron energy in the plasma without the need for heating. We have elucidated the influence of applied voltage, NH₃ concentration, and NH₃ gas residence time on H₂ production [4]. The H₂ yield increased with an increase in higher applied voltage, gas residence time, and a decrease in NH₃ concentration. However, the H₂ yield saturated at high applied voltage because of NH₃ production from generated H₂. The reverse reaction has to reduce for high efficiency hydrogen production. In order to suppress the reverse reaction, an innovative plasma reactor combining a H₂ separation membrane (plasma membrane reactor: PMR) was designed [5]. The PMR can simultaneously perform H₂ production and H₂ separation, high purity H₂ is continuously produced.

The purpose of this research is to be clear hydrogen production characteristics of the plasma membrane reactor. H_2 separation characteristics and H_2 generation characteristics were investigated.

*Corresponding Author: h_yukio@gifu-u.ac.jp

Copyright © 2017 by The Author(s). Distributed by JSME and KSME, with permission.

2. EXPERIMENTAL

Fig.1 shows experimental setup for hydrogen production, which consists of a gas supply system, a high voltage pulse power supply for pulsed plasma, a plasma membrane reactor (PMR), and a gas chromatograph for measurement of hydrogen concentration. The PMR consisted of a glass tube and a hydrogen separation membrane module made by Nippon Seisen Co., Ltd. In this module, a palladium alloy (Pd-40%Cu) membrane of 20 μ m thickness was carefully welded inside a thin punched metal (SUS 304). The hydrogen separation membrane module served as the high-voltage electrode of the PMR. The PMR length was 400 mm, whereas the grounded electrode length was 300 mm. Two types of quartz tubes with different outer diameters were used (Outer diameter = 42 mm or 48 mm, thickness = 2 mm). The electrodes had a coaxial configuration with quartz glass tubes as the dielectric material (see the sectional view in Fig.1).

Atmospheric pressure plasma was generated at the reaction gap by dielectric barrier discharge (DBD) with a high voltage pulse power supply (manufactured by Sawafuji Electric Co., Ltd.).

The flow rate of the test gas was adjusted by a mass flow controller with a gas blender (KOFLOC GB-3C and HORIBA SEC-E450). The produced H_2 gas flow rate was measured by a flow meter, and the H_2 concentration was measured by a capillary TCD gas chromatograph (INFICON GC-3000) at the exit of the PMR.

Table 1 lists experimental conditions of H₂ separation experiments and H₂ production experiments. In H₂ separation experiment, 100% H₂ gas or 0.5% H₂ gas (argon balance) was used as a test gas. In H₂ production experiment, 100% NH₃ gas was used. The effect of gas pressure at the PMR inlet (P_{in}) and gas pressure at the PMR outlet (P_{out}) on H₂ separation and production was investigated.

Fig. 1 Experimental setup for hydrogen separation and production by plasma membrane reactor.

Table 1 Experimental conditions		
Plasma conditions		
Repetition rate, $R_{\rm R}$	[kHz]	10
Power consumption	[W]	100-400
Pressure of supplied side, Pin	[kPa (G)]	0-60
Pressure of permeable side, P_{out}	[kPa (G)]	-95-0
For H ₂ separation experiments		
H ₂ concentration (diluted by Ar)	[%]	10-100
Flow rate of H_2 or H_2/Ar , F_0	[L/min]	0.5-2.0
For H ₂ production experiments		
NH ₃ concentration	[%]	100
Flow rate of NH ₃	[L/min]	0.5-2.0
Gap length	[mm]	1.5 or 4.5

3. RESULT AND DISCUSSION

3.1 H₂ Separation Characteristics of PMR (Influence of Differential Pressure)

First, the H₂ separation characteristics of PMR were investigated by using 100% H₂ gas. The P_{in} was varied in the range of 0 to 60 kPa(G) by changing the secondary cylinder pressure of the supplied H₂ gas shown in Fig.1. The P_{out} was also changed from 0 to -90 kPa(G) by adjusting the valve before the suction pump. By changing the differential pressure between P_{in} and P_{out} , the dependence of H₂ permeability on the differential pressure at the outlet of the H₂ separation membrane was investigated. The H₂ permeability, P_{H2} [%] was defined by the following equation:

$$P_{\rm H2}[\%] = F_{\rm H2} / (F_0 \times [\rm H_2]_0) \times 100 \tag{1}$$

where F_{H2} [L/min] is the H₂ permeation flow rate at the H₂ separation membrane outlet, F_0 [L/min] is the supply gas flow rate, [H₂]₀ is the H₂ concentration in the supply gas.

Fig. 2 shows the change of F_{H2} with respect to the differential pressure ($P_{in} - P_{out}$). At the $P_{in} = 0$, the F_{H2} increased with an increase in the differential pressure. Smith reported that the behaviour of H₂ permeation flux of H₂ separation membrane depends on H₂ partial pressure and difference pressure at in/out of the H₂ separation membrane [6]. The correlation is given by the following Richardson equation:

$$J = \phi / d \times (P_{\rm H}^{0.5} - P_{\rm L}^{0.5})$$
⁽²⁾

where J [mol-H₂·s⁻¹] is the H₂ permeation flux, ϕ [mol-H₂·m⁻¹·s⁻¹·Pa^{-0.5}] is the H₂ permeability coefficient, and d [m] is the H₂ separation membrane thickness. $P_{\rm H}$ and $P_{\rm L}$ [Pa] are H₂ partial pressure of the H₂ separation membrane inlet side and outlet side.

Fig. 2 Hydrogen separation characteristics of the plasma membrane reactor (Supplied gas:100% H₂)

According to equation (2), H_2 permeability, P_{H2} , proportionally increased with a decrease in P_{out} under a constant P_{in} . On the other hand, at a constant P_{out} , P_{H2} decreased with an increase in P_{in} . This is because that H_2 production was affected by P_{in} . Under pressurized plasma condition, plasma is unstable; therefore, H_2 production was decreased. Compared to atmospheric pressure plasma, pressured plasma decreases the density of generated electrons e, so it is considered that the H radical concentration generated also decreases. [7].

Generally, a H₂ separation membrane made of a palladium alloy can separate H₂ at a temperature of 350° C - 450° C [8]. Figure 2 shows that sufficient H₂ permeability can be performed by the PMR without membrane heating. This is the advantage of the PMR. Though the temperature of the H₂ separation membrane module

heated up to 201 °C by Joule heat, external heating is not required for H_2 separation. In other words, the PMR can reduce the temperature for H_2 separation of Pd alloy membrane.

3.2 H₂ production characteristics by PMR from NH₃

 H_2 production experiments using 100% NH₃ gas were carried out. Two types of PMRs having different gap length (d = 1.5 mm or 4.5 mm) were examined to be clear effect of the gas residence time in the PMR on H_2 production. Figure 3a shows effect of total power consumption on H_2 yield, which was compared with previous data obtained by a plasma reactor without H_2 separation membrane (PR). The H_2 yield Y_{H2} [%] was redefined as follows:

$$Y_{\rm H2} = (F_0 \times [\rm H_2]_{out} / 100 + F_{P_{\rm H2}}) / (F_0 \times 1.5) \times 100$$
(3)

where F_0 [L/min] is the supplied NH₃ gas flow rate, [H₂]_{out} is the H₂ concentration at the reactor outlet, and Fp_{H2} [L/min] is the measured H₂ flow rate.

It found that the maximum H_2 yield of the PR and PMR(d = 4.5) was 13.0 % and 24.4 %, respectively. It is clear that the PMR has advantage in H_2 yield comparing with the PR. This is because that equilibrium in reaction (4) moves to right side by H_2 separation during H_2 production in plasma.

$$2NH_3 \rightleftharpoons 3H_2 + N_2 \tag{4}$$

Figure 3b shows effect of power consumption on H_2 permeable rate as a function of the gap length. The flow rate of H_2 production was greatly increased at the power consumption of 400W in the gap length of 4.5 mm. The behavior related to H_2 separation characteristics that the H_2 separation rate is increased with an increase in hydrogen concentration.

Fig. 3 H_2 production characteristics from NH₃ by PMR. (a: H_2 yield, b: H_2 permeable rate)

4. CONCLUSIONS

Hydrogen separation characteristics and hydrogen production characteristics of the innovative plasma membrane reactor (PMR) were investigated.

First, H₂ permeability of the PMR proportionally increased with a decrease in P_{out} under a constant P_{in} without external heating. This is the advantage of the PMR, because H₂ separation membrane generally required the temperature of 350°C - 450 °C

Second, it found that pure H_2 can be continuously produced by the PMR. The maximum H_2 conversion was 24.4 %.

REFERENCES

- [1] O. Okada, "Current status of Hydrogen production technology from fossil energy resources", *Journal of the Japan Institute of Energy*, **85**, 499–509 (2006).
- [2] G. Strickland, "Ammonia as a hydrogen energy storage medium", Proc. 5th annual thermal storage meeting, Paper 8010555-2, 10th October 1980, McLean, VA, USA.
- [3] O. Elishav, D. R. Lewin, G. E. Shter, G. S. Grader, "The nitrogen economy: Economic feasibility analysis of nitrogen-based fuels as energy carriers", *Applied Energy*, **185**, Part 1, 183–188 (2017)
- [4] S. Kambara, Y. Hayakawa, M. Masui, T. Miura, K. Kumabe, H. Moritomi, "Relation between Chemical Composition of Dissociated ammonia by Atmospheric Plasma and DeNOx Characteristics", *Transactions of the JSME:Series B*, 78, 1038-1042 (2012).
- [5] Y. Hayakawa, S. Kambara, T. Miura, "ammonia reforming by DBD using a hydrogen permeable membrane", *Proceedings of the 68th Gaseous Electronics Conference*, CD-ROM No.KW1.00003 (2015).
- [6] Smith D. P., *Hydrogen in metals*, university of Chicago Press (1948).
- [7] H. Ogawa, K. Kiuchi, T. Saburi and K. Hukaya, "Study of low-temperature plasma excitation reaction for oxygen and inert gas system", *JAERI-Research*, 23 (2001).
- [8] T. Tsuneki, Y. Shirasaki, I. Yasuda, "Hydrogen permeability of palladium-copper alloy membranes", *Journal of the Japan Institute of Metals*, **70**, 658–661 (2006).